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Light scattering by thin nematic liquid crystal films is considered. The confinement has two important
consequences. First, fluctuations with wave vectors not equal to the difference between the wave vectors of the
scattered and the incident light ray can contribute to the scattering. The distribution of fluctuation wave vectors
relevant to the scattering is peaked around this difference and has a width inversely proportional to the film
thickness. Second, only a discrete set of fluctuation wave vectors is allowed due to restrictions imposed by the
boundary conditions. Consequently, the relaxation times of the different fluctuation modes depend on the film
thickness. It appears that the relaxation time decreases due to the confinement. In the limit of vanishing
thicknesses the relaxation time goes linearly to zero with the film thickness. The main conclusions are expected
to hold qualitatively for other confined nematic systems, e.g., for nematics confined in porous media.@S1063-
651X~96!00305-4#

PACS number~s!: 61.30.2v, 78.66.2w, 68.10.Cr, 64.70.Md

I. INTRODUCTION

The physics of liquid crystals in thin films@1–4# and in
porous media@5–12# has received a lot of attention in recent
years. Light scattering techniques are very important for this
research. Nematic liquid crystals scatter light strongly due to
thermal fluctuations of the local orientation. The theory of
orientational fluctuations and of light scattering by orienta-
tional fluctuations in bulk materials is treated in textbooks on
liquid crystals@13,14#. The aim of this paper is to modify
this theory in order to account for finite size effects. It ap-
pears that these modifications are quite important for the
description of light scattering by nematic liquid crystals in a
confined geometry, e.g., thin nematic liquid crystal films.

The present theory modifies two important elements of
the theory of@13,14#. The first element concerns the relation
between the scattering wave vectorsq and the wave vectors
of the incident and scattered light rayki andkf , respectively.
In contrast to the case of bulk nematics, orientational fluc-
tuations with a wave vectorq differing from kf2ki contrib-
ute to the scattering process as well. However, orientational
fluctuations with a wave vectorq close tokf2ki do give the
dominant contribution to the scattering cross section. The
second element concerns the set of allowed wave vectors
q. This set is discrete for confined nematics because of re-
strictions imposed by the boundary conditions, whereas it is
continous for bulk nematics. This means that the orienta-
tional fluctuations can be considered as overdamped standing
waves for confined nematics, whereas they can be considered
as overdamped traveling waves for bulk nematics.

This paper is organized as follows. The next section deals
with the scattering condition between the wave vectorsq,
k i , and kf . The orientational fluctuations of a planarly
aligned nematic film are analyzed in Sec. III. Section IV
deals with the orientational fluctuations of a hybridly aligned
film. Finally, the results are discussed in Sec. VI.

II. SCATTERING CONDITION

A detailed treatment of the theory of light scattering due
to fluctuations of the dielectric properties of the scatterer can
be found in the classical book of Jackson@15#. The applica-
tion of this theory to scattering by nematics is treated in
@13,14#. In this section only the essentials of that theory and
its modifications due to the finite size of the nematic are
discussed. It should be mentioned that a detailed calculation
of the angular dependence of the scattering cross section of
thin nematic films can be found in@16#.

Figure 1 shows a schematic picture of the scattering ge-
ometry. The incoming plane wave has a dielectric displace-
ment field

Din~r,t !5D0ie
i ~ki•r2vt !, ~1!

with D0 the amplitude,ki the wave vector of the incoming
light, i the polarization vector of the incoming wave, and

*Present address: Philips Research Laboratories, Professor Holst-
laan 4, 5656 AA Eindhoven, The Netherlands.

FIG. 1. The parallel lines represent the incoming plane wave,
the circles represent the scattered wave.N indicates the nematic
scatterer whereasD indicates the detector.
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v5cuki u the angular frequency, wherec denotes the velocity
of light. The scattered wave far away from the scatterer can
be expressed as

Dout~r,t !5Ds~kf !
eikr

r
e2 ivt, ~2!

with k5v/c, the outgoing wave vectork f5kr/r , and the
so-called scattering amplitudeDs(k f). The scattering ampli-
tude is related to the differential cross section~the intensity
of the scattered light with polarization vectorf, per unit solid
angle in the direction alongkf , relative to the intensity of the
incoming light! in the following way:

ds

dV
5

uf•Ds~kf !u2

D0
2 . ~3!

The scattering amplitude can be expressed within the Born
approximation as

Da
s ~kf !5

D0

4p (
qÞ0

(
n,b5x,y,z

i n~qb1kib!@~qa1kia!xbn~q!

2~qb1kib!xan~q!#E d3rexp@ i ~q1ki2k f !•r#

~4!

with xab(q) the fluctuating components of the dielectric sus-
ceptibility tensor. These quantities can be expressed in terms
of the fluctuations of the local orientation of the nematic. The
integral overr depends on the shape and size of the nematic.
The shape is approximated by that of a rectangular box with
length, width, and heightBx , By , and Bz , respectively.
Then

E d3reik•r5V
sin~kxBx/2!

kxBx/2

sin~kyBy/2!

kyBy/2

sin~kzBz/2!

kzBz/2
,

~5!

with V5BxByBz the volume of the liquid crystal and
k5q1ki2kf. This integral is sharply peaked around the
maximum atk50. The width of the distribution over com-
ponentka is roughlyp/Ba (a5x,y,z). It follows that only
those fluctuating components of the susceptibility tensor
xab(q) contribute to the scattering amplitude that have a
wave vectorq satisfying

uqa2~kfa2kia!u<p/Ba , ~6!

for a5x,y,z. Clearly, in the limit of an infinitely large liq-
uid crystal, this condition reduces to

qa5kfa2kia . ~7!

Next, a thin film of liquid crystal material is considered.
Then the dimensions of the liquid crystal are

Bx5By5AV/d, ~8a!

Bz5d, ~8b!

whered is the thickness of the film. For sufficiently large
V it follows that condition~6! applies to thez components of

the wave vectors, whereas condition~7! applies to thex and
y-components of the wave vectors.

III. ORIENTATIONAL FLUCTUATIONS OF A PLANARLY
ALIGNED NEMATIC FILM

In this section a fluctuation theory similar to de Gennes’
bulk theory is formulated that takes into account the effect of
the boundaries. In this theory the fluctuating components of
the dielectric susceptibility tensor are related to small fluc-
tuationsdn(r,t) of the director field around the equilibrium
orientationneq. The dependence of the fluctuations on the
spatial coordinates and on time can be solved from the hy-
drodynamic equation and the boundary conditions for the
director field. The general form of these equations is derived
in the Appendix, using the one-constant approach for the
elastic free energy and the Rapini-Papoular approximation
for the surface free energy.

A nematic film of thicknessd is considered, with sub-
strates atz50 andz5d that give rise to planar anchoring. It
is assumed that the easy axes of both substrates point in the
x direction. Then the director field is uniformly planar in
equilibrium:

neq5êx. ~9!

The fluctuation of the director field is given by

dn~r,t !5df~r,t !êy1du~r,t !êz, ~10!

wheredf(r,t) and du(r,t) are the twist and tilt angle, re-
spectively, which are assumed to be small.

Substituting~9! and ~10! in the general equations of the
Appendix, the hydrodynamic equations for the small fluctua-
tions df(r,t) anddu(r,t) appear to be:

gdu̇5K¹2du, ~11a!

gdḟ5K¹2df, ~11b!

whereas the boundary conditions atz50 andz5d can be
expressed as

2K
]du

]z U
z50

1C1du U
z50

50, ~12a!

K
]du

]z U
z5d

1C2du U
z5d

50, ~12b!

2K
]df

]z U
z50

1C1df U
z50

0, ~12c!

K
]df

]z U
z5d

1C2df U
z5d

50. ~12d!

HereK is the effective elastic constant,g the effective vis-
cosity coefficient, andC1 andC2 the anchoring constants of
the substrates atz50 andz5d, respectively. The hydrody-
namic equation as well as the boundary conditions are the
same for both fluctuation modes. Therefore the same results
apply to the tilt and the twist mode. For this reason we will
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restrict the discussion in the following to the twist fluctuation
mode. The solution of the hydrodynamic equation is

df~r,t !5@a cos~qzz!1b sin~qzz!#ei ~qxx1qyy!e2t/t

~13!

with the relaxation time

t5g/Kq2. ~14!

The boundary conditions for the twist fluctuation can now be
expressed as

C1a1Kqzb50, ~15a!

@C2cos~qzd!2Kqzsin~qzd!#a1@C2sin~qzd!

1Kqzcos~qzd!#b50. ~15b!

This set of linear homogeneous equations fora andb has a
nontrivial solution if the determinant of the set of equations
equals zero. This condition leads to

L11L2
d

cot~qzd!52
1

qzd
1
L1L2
d2

qzd ~16!

with the extrapolation lengthsLi5K/Ci ( i51, 2). The secu-
lar equation~16! has an infinite number of solutions, labeled
by a discrete indexn (n50, 1, 2, . . . ,) as can beconcluded
from graphs as in Fig. 2. Consecutive solutions forqz in this
row are seperated by approximatelyp/d.

In general, the secular equation~16! must be solved nu-
merically. However, an analytical solution can be obtained
for values of the thicknessd much smaller thanL1 andL2 .
In this limit the second term on the right hand side of the
secular equation~16! is the largest term of this equation.
Consequently, moden will have a value ofqzd close to
np ~as can also be concluded from graphs as in Fig. 2!.
Expanding the secular equation~16! in terms of this small
difference gives an analytical expression forqzd of mode
n. For example, by using

cot~x!5
1

x
2
1

3
x1•••

for x!1, it is found for the moden50 that

~qzd!25
L11L2
L1L2

d1
d2

L1L2
2
1

3 S L11L2
L1L2

D 2d2. ~17!

The corresponding relaxation time is given by

g/t5K~qx
21qy

2!1K
L11L2
L1L2

1

d
1

K

L1L2
2
K

3 S L11L2
L1L2

D 2,
5K~qx

21qy
2!1

C11C2

d
1
C1C22~C11C2!

2/3

K
.

~18!

It follows that in the limit of vanishing film thicknesses the
relaxation time goes linearly to zero with the film thickness.
Analytical expressions for the relaxation time of the fluctua-
tion modesn>1 can be derived in a similar way. The de-
pendence oft on d as given by~18! seems to be in agree-
ment with experiments of Wittebroodet al. @17# in the
scattering geometry withkfz2kiz50. Then50 mode is the
dominating scattering mode in this geometry.

Analytical expressions for the allowed wave vectorsqz
can also be obtained in the strong anchoring limit, i.e., in the
limit of large anchoring constantsC1 andC2 or in the limit
of large d. In this limit the secular equation~16! can be
approximated by

sin~qzd!50. ~19!

Then the solutions areqz5(n11)p/d (n50, 1, 2, . . . ,).
Consequently, the fluctuation moden has a relaxation time

g/t5K~qx
21qy

2!1K~n11!2
p2

d2
. ~20!

For larged the set of allowed values ofqz is approximately
continuous, leading to the classical expressiont5g/Kq2,
independent ofd.

Figure 3 shows the thickness dependence of the relaxation
time for the n50 mode according to an exact numerical
solution of ~16!, the analytical approximation~18!, and the
approximation of infinitely thick layers. The parameters used
in the calculations areK53 pN, g515 mPas,C1515mJ/
m2 and C255mJ/m2 ~leading to extrapolation lengths
L150.2 mm andL250.6 mm!. The analytical approxima-
tion is reasonable for values ofd that are of the order of
L1 andL2 and increasingly better for smaller values ofd. On
the other hand,d needs to be at least one order of magnitude
larger thanL1 and L2 for the approximation of infinitely
thick layers to be reasonable.

IV. ORIENTATIONAL FLUCTUATIONS OF A HYBRIDLY
ALIGNED NEMATIC FILM

In a hybridly aligned film, one of the substrates favors
homeotropic alignment, whereas the other substrate favours
planar alignment. The substrate atz5d is taken to be the

FIG. 2. Plot of the functionsf 1(qzd)5L1L2(qzd)/d
221/(qzd)

~solid curve! and f 2(qzd)5(L11L2)cot(qzd)/d ~dot-dashed curve!
for L1 /d52 andL2 /d51. The intersections of both curves give the
allowedqzd values of the fluctuation modes of a planarly aligned
film.
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substrate with homeotropic anchoring conditions. The easy
direction of the substrate atz50 is assumed to point in the
x direction. The equilibrium director field as a function of
thickness has been studied in@18#. It appears that the equi-
librium director field can be expressed as

neq~z!5cosueq~z!êx1sinueq~z!êz, ~21!

with the equilibrium tilt angle

ueq~z!5u11
u22u1
d

z. ~22!

The tilt angles at the substratesu1 and u2 must be solved
from the boundary conditions, which can be written as

u22u12
d

L2
sinu2cosu250, ~23a!

u22u12
d

L1
sinu1cosu150, ~23b!

with the extrapolation lengthsL i5K/Ci ~i 5 1,2!. Figure 4
shows the numerically calculated thickness dependence of
u1 and u2 . The parameters used in the calculation are
K53 pN,C1515mJ/m2, andC255mJ/m2 ~leading to ex-
trapolation lengthsL150.2 mm and L250.6 mm!. It ap-
pears that a second order transition to a uniformly planar
director profile takes place atd5dc5L22L1 , provided that
C1.C2 @18#.

The fluctuation of the director field is given by

dn~r,t !5@2sinueq~z!êx1cosu eq~z!êz#du~r,t !

1cosueq~z!df~r,t !êy, ~24!

with the tilt and twist fluctuationsdu(r,t) anddf(r,t). Sub-
stituting the expressions for the equilibrium director field and
the small fluctuation in the general equations of the Appen-
dix, it appears that the linearized hydrodynamic equations
are given by

gdu̇5K¹2du, ~25a!

g~cosueqdḟ!5K¹2~cosueqdf!1K
~u22u1!

2

d2
~cosueqdf!,

~25b!

whereas the boundary conditions can be expressed as

2K
]du

]z U
z50

1C1cos~2u1!du U
z50

50, ~26a!

K
]du

]z U
z5d

2C2cos~2u2!du U
z5d

50, ~26b!

2K
]~cosueqdf!

]z U
z50

1C1cos
2u1~cosueqdf! U

z50
50,

~26c!

K
]~cosueqdf!

]z U
z5d

1C2cos
2u2~cosueqdf! U

z5d

50.

~26d!

The solutions of the linearized hydrodynamic equations
are

du~r,t !5@aucos~qzz!1busin~qzz!#ei ~qxx1qyy!e2t/t tilt ,
~27a!

cosueq~z!df~r,t !5@afcos~qzz!

1bfsin~qzz!#ei ~qxx1qyy!e2t/t twist,

~27b!

with the relaxation times

g/t tilt5Kq2, ~28a!

g/t twist5Kq21K
~u22u1!

2

d2
. ~28b!

FIG. 3. The relaxation time of then50 mode as a function of
the thickness according to the exact numerical solution of~16!
~solid line!, the approximate analytical formula~18! for small d
~dashed line!, and the approximation for infinitely larged ~dot-
dashed line!.

FIG. 4. The equilibrium tilt angle at the planarly anchoring sub-
strateu1 ~solid line! and the equilibrium tilt angle at the homeotro-
pically anchoring substrateu2 ~dashed line! as a function of the
thickness.
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The boundary conditions for the tilt fluctuations appear to be
identical to the corresponding equations in the case of the
planarly aligned film, if the following substitutions are made:

C1→C1cos~2u1!,

C2→2C2cos~2u2!,

e.g., ford,dc this boils down to substituting the anchoring
constantC2 by 2C2 . The boundary conditions for the twist
fluctuations are also identical to the boundary conditions in
the case of the planarly aligned film, if proper substitutions
are made. These substitutions for the twist mode are

C1→C1cos
2u1 ,

C2→C2sin
2u2 ,

e.g., ford,dc this is equivalent to settingC2 equal to zero.
Now it follows that the secular equation for the tilt fluctua-
tion changes to

L2 /cos~2u2!2L1 /cos~2u1!

d
cot~qzd!

5
1

qzd
1

L1L2
d2cos~2u1!cos~2u2!

qzd, ~29a!

whereas the secular equation for the twist fluctuation
changes to

L1 /cos
2u11L2 /sin

2u2
d

cot~qzd!

52
1

qzd
1

L1L2
d2cos2u1sin

2u2
qzd. ~29b!

In general, Eqs.~29a! and~29b! must be solved numerically.
Analytical solutions are possible for thicknessesd much
smaller thanL1 andL2 . The tilt and twist mode with small-
estqz have relaxation times given by

g/t tilt5K~qx
21qy

2!1
C12C2

d
2
C1C21~C12C2!

2/3

K
,

~30a!

g/t twist5K~qx
21qy

2!1
C1

d
2
C1
2/3

K
. ~30b!

In the limit of vanishing film thicknesses the relaxation times
go linearly to zero with the film thickness.

Equations with the thickness dependence of~30a! and
~30b! appear to describe the experiments of@17# reasonably.
Figures 5 and 6 show the thickness dependence of the relax-
ation time of the tilt and twist mode with smallestqz , re-
spectively, according to exact numerical solutions of~29a!
and ~29b!, to the analytical approximations~30a! and ~30b!,
and to the approximation for infinitely thick layers. The pa-
rameters used in the calculations areK53 pN,g515 mPa s,
C1515mJ/m2, andC255mJ/m2, i.e., the same elastic con-
stant and anchoring constants as used in the calculation for
Fig. 4. It appears thatqz for the tilt mode goes to zero pro-

portional toAudc /d21u asd approachesdc50.4 mm, lead-
ing to the cusp at the critical thickness in Fig. 5. This cusp is
a direct consequence of the nonanalytical character of
u1(d) and u2(d) at d5dc . The nonanalytical behavior of
the twist mode is less pronounced, as can be seen from the
small kink in the curve of Fig. 6 atd5dc .

V. DISCUSSION

All fluctuation modes give a contribution to the scattering
amplitude proportional to

sin@~qz2~kfz2kiz!d!/2#

@qz2~kfz2kiz!d#/2
.

For small thicknessesqz of moden is approximately equal to
np. Clearly, the mode with minimalunp2(kfz2kiz)du gives
the dominant contribution to the scattering proces. However,
the contributions from other modes with a sufficiently small
value for the differenceunp2(kfz2kiz)du can be expected to
be important as well. This implies that for very thin films the

FIG. 5. The relaxation time of the tilt mode with smallestqz as
a function of the thickness according to the exact numerical solution
of ~29a! ~solid line!, the approximate analytical formula~30a! for
small d ~dashed line!, and the approximation for infinitely larged
~dot-dashed line!.

FIG. 6. The relaxation time of the twist mode with smallestqz
as a function of the thickness according to the exact numerical
solution of ~29b! ~solid line!, the approximate analytical formula
~30b! for smalld ~dashed line!, and the approximation for infinitely
larged ~dot-dashed line!.
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decay of the autocorrelation function may be nonexponen-
tial. The moden50 is the dominating scattering mode if the
thickness is smaller than approximatelyp/(kfz2k iz). As
(kfz2kiz) is always smaler than 4p/l, with l the wave-
length of the light in the nematic, it follows that then50
mode is responsible for most scattering events in films thin-
ner than approximatelyl/4, whatever the scattering geom-
etry is.

In case the elastic anisotropy~the difference between
K1 , K2 , andK3) is taken into account the problem of deter-
mining the fluctuation eigenmodes of the hybrid film be-
comes a formidable mathematical problem. This is due to the
fact that the fluctuation eigenmodes can then no longer be
expressed in terms of a single wave vectorq. Instead, the
eigenmodes correspond to an infinite Fourier sum of terms
with different wave vectorsq.

Recently, fluctuations of confined nematic liquid crystals
were treated under the assumption of strong anchoring@19#.
The present theory improves some of the results of@19# by
incorporating weak anchoring, i.e., by allowing the director
field at the boundary to deviate from the preferred direction.
This is more appropriate in the limit of small film thick-
nessesd. When d is much smaller than the extrapolation
length K/C the anchoring properties dominate the fluctua-
tions, instead of the elastic properties. Therefore, the expres-
sion for the inverse of the relaxation time contains a term
proportional toC/d, instead of the term proportional to
K/d2 as appears in the limit of strong anchoring. Conse-
quently, in the limitd going to zero,t goes to zero linear in
d, instead of quadratic ind. It should be noted that devia-
tions from this behavior can be expected in scattering geom-
etries with (kfz2kiz)Þ0 for thicknesses larger than approxi-
matelyp/(kfz2k iz).

The present theory can also be applied to light scattering
by nematics confined in porous media. If these media are
approximated by a set of randomly oriented cylindrical
pores, an effective relaxation time for sufficiently small av-
erage pore sizesR can be defined as

g/t eff5K^qi
2&1

2C

R
, ~31!

with C the anchoring constant andqi the magnitude of the
component of the scattering vector along the pore direction.
The brackets denote averaging over the randomly oriented
pores. Deviations from theC/R dependence ofteff

21 can oc-
cur for values ofR larger than approximatelyl/4. A K/R2

dependence oft eff
21 @7,11,12# seems appropriate for values of

Rmuch larger thanK/C. A crossover between the two types
of behavior may be expected for the intermediate regime.
Due to the distribution over the various pore sizes and pore
orientations~and because of the smallness of the pore sizes!
many fluctuation modes with different relaxation times con-
tribute to the scattering process. This means that the autocor-
relation function may be expected to deviate substantially
from exponential decay@5,11#.

Concluding, the light scattering by thin nematic liquid
crystal films differs in two important respects from the light
scattering by nematic layers of infinite thickness. First, the

orientational fluctuations that contribute to the scattering
cross section have wave vectorsq with a z component that
satisfies

uqz2~kfz2kiz!u<p/d

with d the thickness of the film. Second, only orientational
fluctuations with wave vectors that belong to a discrete set of
wave vectors are allowed by the boundary conditions. This
means that the orientational fluctuations are overdamped
standing waves rather than overdamped traveling waves. As
a consequence, the relaxation time depends on the thickness
of the nematic liquid crystal film.

APPENDIX

The hydrodynamic equation for the director field is

gṅ5h2ln, ~A1!

with g the effective viscosity coefficient,h the so-called mo-
lecular field, andl a parameter that must be solved from the
orthonormality condition for the director field

n•n51. ~A2!

The components of the molecular field are defined by

ha5 (
b5x,y,z

]

]r b
F ] f el
]~]na /]r b!G2

] f el
]na

, ~A3!

with f el the elastic free energy density. In the one-constant
approach, this quantity can be expressed as

f el5
1

2
K (

a5x,y,z
~¹na!2, ~A4!

where K is the effective elastic constant. This leads to a
molecular field

h5K¹2n. ~A5!

Using the orthonormality condition~33! and the hydrody-
namic equation~A1! for the director field an explicit expres-
sion for the constantl can be derived:

l5ln•n5@h2gṅ#•n5h•n5Kn•¹2n. ~A6!

Now the hydrodynamic equation can be written as

gṅ5K¹2n2K~n•¹2n!n. ~A7!

The equilibrium director field only depends on the coordi-
natez. Then it follows that

d2neq
dz2

2S neq• d2neqdz2 Dneq50. ~A8!

The hydrodynamic equation for small fluctuationsdn is ob-
tained by substituting

n5neq1dn, ~A9!

in Eq. ~A7! and linearizing this equation indn. It is found
that
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gdṅ5K¹2dn2KS neq• d2neqdz2 D dn2KS neq• ]2dn

]z2 Dneq
2KS dn•

d2neq
dz2 Dneq. ~A10!

The boundary conditions can be derived using an expression
for the surface free energy densityW. The Rapini-Papoular
approximation leads to the following simplified form:

W52
1

2
C1~P1•n!2uz502

1

2
C2~P2•n!2uz5d . ~A11!

Here C1 and C2 are the anchoring constants andP1 and
P2 are unit vectors along the easy axes of the substrates at
z50 andz5d, respectively. In order to avoid unnecessary
mathematical complications no surface elasticity is taken
into account. The boundary conditions at the substrates are

05
]W

]n U
z50

2
] f el

]~]n/]z!
U
z50

1ls1n U
z50

52C1~P1•n!P12K
]n

]zU
z50

1ls1nU
z50

, ~A12a!

05
]W

]n U
z5d

2
] f el

]~]n/]z!
U
z5d

1ls2n U
z5d

52C2~P2•n!P21K
]n

]zU
z5d

1ls2nU
z5d

. ~A12b!

Herels1 andls2 are parameters that must be solved from the
orthonormality condition for the director field. Analogous to
the hydrodynamic equation for the bulk it follows that

ls15l s1n•nuz505FC1~P1•n!11K
]n

]zG•nU
z50

5C1~P1•n!2uz50 , ~A13a!

and similarly

ls25C2~P2•n!2uz5d . ~A13b!

Now the boundary conditions can be written as

2C1~P1•n!@P12~P1•n!n#uz502K
]n

]zU
z50

50,

~A14a!

2C2~P2•n!@P22~P2•n!n#uz5d1K
]n

]zU
z5d

50.

~A14b!

The boundary conditions for the equilibrium director field
read

2C1~P1•neq!@P12~P1•neq!neq#uz502K
dneq
dz U

z50

50,

~A15a!

2C2~P2•neq!@P22~P2•neq!neq#uz5d1K
dneq
dz U

z5d

50,

~A15b!

whereas the linearized boundary conditions for the small
fluctuations can be expressed as

2C1~P1•dn!@P122~P1•neq!neq#uz50

1C1~P1•neq!
2dnuz502K

]dn

]z U
z50

50, ~A16a!

2C2~P2•dn!@P222~P2•neq!neq#uz5d

1C2~P2•neq!
2dnuz5d1K

]dn

]z U
z5d

50. ~A16b!

It is often advanageous to use the parametrization of the
director field in terms of the so-called tilt and twist angles
u andf:

n5~cosucosf,cosusinf,sinu!, ~A17!

e.g., the two independent components of the fluctuationdn
can be related to the tilt and twist fluctuationsdu anddf.

@1# H. Yokoyama, J. Chem. Soc. Faraday Trans.84, 1023~1988!.
@2# A. Poniewierski and T.J. Sluckin, Liq. Cryst.2, 281 ~1987!.
@3# O.D. Lavrentovich and V.M. Pergamenshchik, Phys. Rev.

Lett. 73, 979 ~1994!.
@4# M.M. Wittebrood, D.H. Luijendijk, S. Stallinga, Th. Rasing,

and I. Musevic, Phys. Rev. E~to be published!.
@5# X.L. Wu, W.I. Goldburg, M.X. Liu, and J.Z. Xue, Phys. Rev.

Lett. 69, 470 ~1992!.
@6# T. Bellini, N.A. Clark, C.D. Munzy, L. Wu, C.W. Garland,

D.W. Schaefer, and B.J. Oliver, Phys. Rev. Lett.69, 788
~1992!.

@7# G.S. Iannachione, G.P. Crawford, S. Z˘umer, J.W. Doane, and
D. Finotello, Phys. Rev. Lett.71, 2595~1993!.

@8# N.A. Clark, T. Bellini, R.M. Malzbender, B.N. Thomas, A.G.
Rappaport, C.D. Muzny, D.W. Schaefer, and L. Hrubesh,
Phys. Rev. Lett.71, 3505~1993!

@9# S. Tripathi, C. Rosenblatt, and F.M. Aliev, Phys. Rev. Lett.72,
2725 ~1994!.

@10# A. Maritan, M. Cieplak, T. Bellini, and J.R. Banavar, Phys.
Rev. Lett.72, 4113~1994!.

@11# G. Schwalb and F.W. Deeg, Phys. Rev. Lett.74, 1383~1995!.
@12# T. Bellini, N.A. Clark, and D.W. Schaefer, Phys. Rev. Lett.74,

2740 ~1995!.
@13# P.G. de Gennes and J. Prost,The Physics of Liquid Crystals

~Clarendon Press, Oxford, 1993!, pp. 139–150, 227–230.
@14# G. Vertogen and W.H. de Jeu,Thermotropic Liquid Crystals,

53 6091THEORY OF LIGHT SCATTERING BY THIN NEMATIC . . .



Fundamentals~Springer-Verlag, Berlin, 1988!, pp. 114–125.
@15# J.D. Jackson,Classical Electrodynamics~John Wiley & Sons,

New York, 1975!, pp. 411–426.
@16# V.P. Romanov and A.N. Shalaginov, Zh. Eksp. Teor. Fiz.102,

884 ~1992! @Sov. Phys. JETP75, 483 ~1992!#.

@17# M.M. Wittebrood, D.H. Luijendijk, S. Stallinga, Th. Rasing,
and I. Mus̆evic̆ ~unpublished!.

@18# G. Barbero and R. Barberi, J. Phys.~France! 44, 609 ~1983!.
@19# P. Ziherl, M. Vilfan, and S. Zumer, Phys. Rev. E52, 690

~1995!.

6092 53STALLINGA, WITTEBROOD, LUIJENDIJK, AND RASING


