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Theory of light scattering by thin nematic liquid crystal films
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Light scattering by thin nematic liquid crystal films is considered. The confinement has two important
consequences. First, fluctuations with wave vectors not equal to the difference between the wave vectors of the
scattered and the incident light ray can contribute to the scattering. The distribution of fluctuation wave vectors
relevant to the scattering is peaked around this difference and has a width inversely proportional to the film
thickness. Second, only a discrete set of fluctuation wave vectors is allowed due to restrictions imposed by the
boundary conditions. Consequently, the relaxation times of the different fluctuation modes depend on the film
thickness. It appears that the relaxation time decreases due to the confinement. In the limit of vanishing
thicknesses the relaxation time goes linearly to zero with the film thickness. The main conclusions are expected
to hold qualitatively for other confined nematic systems, e.g., for nematics confined in porous[1820&8-
651X(96)00305-4

PACS numbgs): 61.30-v, 78.66—w, 68.10.Cr, 64.70.Md

I. INTRODUCTION II. SCATTERING CONDITION

A detailed treatment of the theory of light scattering due
to fluctuations of the dielectric properties of the scatterer can
be found in the classical book of Jackddrb]. The applica-
Yion of this theory to scattering by nematics is treated in

thermal fluctuations of the local orientation. The theory 01‘(.{13’14]' In this section only the essentials of that theory and

orientational fluctuations and of light scattering by orienta—ItS modifications due to the finite size of the nematic are

tional fluctuations in bulk materials is treated in textbooks Ond|scussed. It should be mentioned that a detailed calculation

- . : : .~ of the angular dependence of the scattering cross section of
I|qU|d crysta_lls[13,l4]. The aim of th_ls_ paper is to modify thin nemgtic filmspcan be found 6], 9
this theory in order to account for finite size effects. It ap- Figure 1 shows a schematic picture of the scattering ge-
pears that these modifications are quite important for th%metry The incoming plane wave has a dielectric displace-
description of light scattering by nematic liquid crystals in a hent fiéld
confined geometry, e.g., thin nematic liquid crystal films.

The present theory modifies two important elements of
the theory of13,14. The first element concerns the relation D(r,t)=Dyie' ki, 6h)
between the scattering wave vectgrand the wave vectors
of the incident and scattered light r&yandk;, respectively. . . . .
In contrast to the case of buIE nemyatics,forienl:t)ationalyfluc-\’.\”th D.O the ampllltut_jeki the wave vec_tor of _the incoming
tuations with a wave vectay differing from k,— k; contrib- light, i the polarization vector of the incoming wave, and
ute to the scattering process as well. However, orientational
fluctuations with a wave vectay close tok; —k; do give the
dominant contribution to the scattering cross section. The
second element concerns the set of allowed wave vectors
g. This set is discrete for confined nematics because of re-
strictions imposed by the boundary conditions, whereas it is
continous for bulk nematics. This means that the orienta-
tional fluctuations can be considered as overdamped standing
waves for confined nematics, whereas they can be considered
as overdamped traveling waves for bulk nematics.

This paper is organized as follows. The next section deals
with the scattering condition between the wave veciprs
k;, and k;. The orientational fluctuations of a planarly
aligned nematic film are analyzed in Sec. lll. Section IV
deals with the orientational fluctuations of a hybridly aligned
film. Finally, the results are discussed in Sec. VI.

The physics of liquid crystals in thin filml—4] and in
porous medida5—12] has received a lot of attention in recent
years. Light scattering techniques are very important for thi

FIG. 1. The parallel lines represent the incoming plane wave,
“Present address: Philips Research Laboratories, Professor Holshe circles represent the scattered waNeindicates the nematic
laan 4, 5656 AA Eindhoven, The Netherlands. scatterer wheredd indicates the detector.
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w=c|k;| the angular frequency, whecedenotes the velocity the wave vectors, whereas conditiGh applies to thex and

of light. The scattered wave far away from the scatterer caiy-components of the wave vectors.

be expressed as

I1l. ORIENTATIONAL FLUCTUATIONS OF A PLANARLY
ALIGNED NEMATIC FILM

ikr

D(r,t)=D3(k) ——e ™", v
In this section a fluctuation theory similar to de Gennes’
with k=w/c, the outgoing wave vectdk ;=kr/r, and the bulk theory is formulated that takes into account the effect of
so-called scattering amplitud@®(k ;). The scattering ampli- the boundaries. In this theory the fluctuating components of
tude is related to the differential cross sectitine intensity ~ the dielectric susceptibility tensor are related to small fluc-

of the scattered light with polarization vectomper unit solid ~ tuationson(r,t) of the director field around the equilibrium
angle in the direction alonky, relative to the intensity of the orientationne,. The dependence of the fluctuations on the

incoming light in the following way: spatial coordinates and on time can be solved from the hy-
drodynamic equation and the boundary conditions for the

do  |f-DS(kq)|? director field. The general form of these equations is derived

a0 Dé . 3) in the Appendix, using the one-constant approach for the

elastic free energy and the Rapini-Papoular approximation
The scattering amplitude can be expressed within the Borfor the surface free energy.
approximation as A nematic film of thicknessd is considered, with sub-
strates ar=0 andz=d that give rise to planar anchoring. It

Do : is assumed that the easy axes of both substrates point in the
S _ . .
Dok = 4 q;o V,BZEX,Y,Z H(AptKigl(dat Kia) Xp(0) x direction. Then the director field is uniformly planar in
equilibrium:
—(9pt kiB)Xav(q)]f d*rexdi(g+ki—ky)-r] Neq= &- 9)

(4)  The fluctuation of the director field is given by

with x,z(0) the fluctuating components of the dielectric sus- an(r,t)=8p(r,0)&+ 56(r,1)8, (10)
ceptibility tensor. These quantities can be expressed in terms

of the fluctuations of the local orientation of the nematic. Thewhere §¢(r,t) and 86(r,t) are the twist and tilt angle, re-
integral over depends on the shape and size of the nematigpectively, which are assumed to be small.

The shape is approximated by that of a rectangular box with Substituting(9) and (10) in the general equations of the
length, width, and heighB,, B,, and B,, respectively. Appendix, the hydrodynamic equations for the small fluctua-
Then tions 8¢(r,t) and 66(r,t) appear to be:

sin(k,B,/2) sin(k,B,/2) sin(k,B,/2) y56=KV250, (119
k.B,/2 k,B,/2 k,B2

f dire’k =V
(5) ySb=KV256, (11b

with V=B,B,B, the volume of the liquid crystal and \whereas the boundary conditionsat0 andz=d can be
k=g+ki—k;. This integral is sharply peaked around theexpressed as
maximum atk=0. The width of the distribution over com-

ponentk,, is roughly 7/B, (¢=X,Yy,z). It follows that only d66 B
those fluctuating components of the susceptibility tensor _KE +C160 —0_0’ (123
Xap(Q) contribute to the scattering amplitude that have a 2=0 =
wave vectorq satisfying 950
K— +C,66 =0, (12b
|qa_(kfa_kia)|s7T/Bai (6) 9z z=d z=d
fqr a=X,Y,Z. 'Clearly,' ?n the limit of an infinitely large lig- 98¢
uid crystal, this condition reduces to _KW +C.6¢ 0, (120
z=0 z=0
qa:kfa_kia' (7)
o - . _ 9o
Next, a thin film of liquid crystal material is considered. KW +C,0¢ =0. (120
Then the dimensions of the liquid crystal are z=d z=d
B,.=B,=\V/d, (8a  HereK is the effective elastic constany, the effective vis-
Y cosity coefficient, an€; andC, the anchoring constants of
B,=d, (8b)  the substrates a&=0 andz=d, respectively. The hydrody-

namic equation as well as the boundary conditions are the
whered is the thickness of the film. For sufficiently large same for both fluctuation modes. Therefore the same results
V it follows that condition(6) applies to the components of apply to the tilt and the twist mode. For this reason we will



fi(4,9), fe.9)

FIG. 2. Plot of the functiong;(q,d) =L L (0,d)/d?>— 1/(q,d)
(solid curve and f,(qg,d)=(L;+L,)cot(d)/d (dot-dashed curye
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cot(x)—; Xt
for x<1, it is found for the moden=0 that
Li+L, d>  1(L;+L,)\2
2— _Z 2
@) =19, 3l ¢ @D
The corresponding relaxation time is given by
Li+L,1 K K[L;+L,\?
_ 2 2 - -
Yir=K@SH e KT gt L s LG
C;+C, C,C,—(C,+C,)%3
=K(a+a)+ —5—+ < :
(18)

forL,/d=2 andL,/d=1. The intersections of both curves give the
allowed g,d values of the fluctuation modes of a planarly aligned It follows that in the limit of vanishing film thicknesses the

film.

relaxation time goes linearly to zero with the film thickness.
Analytical expressions for the relaxation time of the fluctua-

restrict the discussion in the following to the twist fluctuation tion modesn=1 can be derived in a similar way. The de-

mode. The solution of the hydrodynamic equation is

5(r,t)=[ rcogq,2) + Bsin(q,z) Je'( B WVe T
13

with the relaxation time

= yIKQ?. (14)

pendence ofr ond as given by(18) seems to be in agree-
ment with experiments of Wittebrooét al. [17] in the
scattering geometry witk;,—k;,=0. Then=0 mode is the
dominating scattering mode in this geometry.

Analytical expressions for the allowed wave vectogs
can also be obtained in the strong anchoring limit, i.e., in the
limit of large anchoring constants; andC, or in the limit
of large d. In this limit the secular equatiofil6) can be
approximated by

The boundary conditions for the twist fluctuation can now be

expressed as

C,a+Kq,B=0, (1539
[C,co4q,d)—Kdq,sin(qg,d) Ja+[C,sin(g,d)
+Kg,c09q,d)]8=0. (15b)

This set of linear homogeneous equationsdoand 8 has a

sin(q,d)=0. (29

Then the solutions arg,=(n+1)w/d (n=0,1, 2, ...,).
Consequently, the fluctuation modehas a relaxation time

2

_ 2,2 2
ylT=K(ay"+0gy,7) +K(n+1) - (20)

For larged the set of allowed values af, is approximately

nontrivial solution if the determinant of the set of equationscontinuous, leading to the classical expressieay/Kq?,

equals zero. This condition leads to

LyL,

Li+L, oot .
cot(q,d)= @JF?QZ

d

(16)

with the extrapolation lengths,=K/C; (i=1, 2). The secu-

lar equation(16) has an infinite number of solutions, labele

by a discrete index (n=0, 1, 2, ...,) as can beoncluded
from graphs as in Fig. 2. Consecutive solutionsdgin this
row are seperated by approximatetyd.

In general, the secular equati¢h6) must be solved nu-

independent ofl.

Figure 3 shows the thickness dependence of the relaxation
time for the n=0 mode according to an exact numerical
solution of (16), the analytical approximatiofil8), and the
approximation of infinitely thick layers. The parameters used
in the calculations ar&K=3 pN, y=15 mPasC;=15uJ/

gm? and C,=5uJ/m? (leading to extrapolation lengths
L;=0.2 um andL,=0.6 um). The analytical approxima-
tion is reasonable for values af that are of the order of
L, andL, and increasingly better for smaller valuesdofOn
the other handd needs to be at least one order of magnitude

merically. However, an analytical solution can be obtainedarger thanl, and L, for the approximation of infinitely

for values of the thicknesd much smaller thai.; andL,.

thick layers to be reasonable.

In this limit the second term on the right hand side of the
secular equation{16) is the largest term of this equation. V. ORIENTATIONAL FLUCTUATIONS OF A HYBRIDLY

Consequently, mode will have a value ofg,d close to
nw (as can also be concluded from graphs as in Fig.
Expanding the secular equatigh6) in terms of this small
difference gives an analytical expression fpid of mode
n. For example, by using

ALIGNED NEMATIC FILM
2
In a hybridly aligned film, one of the substrates favors
homeotropic alignment, whereas the other substrate favours
planar alignment. The substrate ztd is taken to be the
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FIG. 3. The relaxation time of the=0 mode as a function of
the thickness according to the exact numerical solution 1)
(solid ling), the approximate analytical formuld8) for small d
(dashed ling and the approximation for infinitely largd (dot-
dashed ling
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FIG. 4. The equilibrium tilt angle at the planarly anchoring sub-
strated, (solid line) and the equilibrium tilt angle at the homeotro-
pically anchoring substraté, (dashed ling as a function of the
thickness.

y80=KV250, (259

substrate with homeotropic anchoring conditions. The easy

direction of the substrate at=0 is assumed to point in the i
x direction. The equilibrium director field as a function of y(cosﬁeq5¢)=KV2(cosﬁeq5¢)+K g
thickness has been studied[it8]. It appears that the equi-

librium director field can be expressed as

Ne Z) = COHef 2) &+ SiNdey( 2) €, (21
with the equilibrium tilt angle
0,— 6,
Oed2)= 01+ d Z. (22

The tilt angles at the substrat®s and 8, must be solved
from the boundary conditions, which can be written as

d
0,— 6,— —sinf,cos9,=0,

L, (233
d
0,—0,— L—smelcosﬂl: 0, (23b
1
with the extrapolation lengths;=K/C; (i = 1,2). Figure 4

_ 2
M(cosﬁeqw),

(25b)

whereas the boundary conditions can be expressed as

956
~K——| +C,co926,)86| =0, (263
az | _
z=0 z=0
956
— | —C,c09260,)86| =0, (26b)
Jz 7=d s—d
d(COHq0
—KM +C100€6,(coHegdb) | =0,
9z o =0
(260
A(COH 0
KM +C,0080,(cOHegdp) | =0.
0z 2—d 7=d
(260

shows the numerically calculated thickness dependence of The solutions of the linearized hydrodynamic equations
0, and 6,. The parameters used in the calculation areare

K=23 pN, C;=15uJ/m?, andC,=5 uJ/m? (leading to ex-
trapolation lengthd.;=0.2 um andL,=0.6 um). It ap-

pears that a second order transition to a uniformly planar

director profile takes place di=d.=L,—L,, provided that

C,>C, [18].
The fluctuation of the director field is given by
Sn(r,t)=[ —sinfeq 2) &+ CO o 2)€,]56(r,t)
+COSef 2) 5H(1,1)8y, (24

with the tilt and twist fluctuationg6(r,t) and5¢(r,t). Sub-

stituting the expressions for the equilibrium director field and
the small fluctuation in the general equations of the Appen-
dix, it appears that the linearized hydrodynamic equations

are given by

50(r,t)=[ a,c09q,z) + B,sSin(q,z) e & Y Vi,
(273

COSe(2) dp(r,t) =[ a4C04q,2)

+ B 4Sin(q,2) 16! Y )e Vst

(270
with the relaxation times
¥l T = qu. (28a
6,— 6,)?
Yl Tois= KG2+ K g (28b)

d2



THEORY OF LIGHT SCATTERING BY THIN NEMATIC ... 6089

53
The boundary conditions for the tilt fluctuations appear to be 10 i
identical to the corresponding equations in the case of the BN
planarly aligned film, if the following substitutions are made: 08 !
C1—>C1C01201), I "r
- 0.6r ¢
C2—> - CZCOS(ZHZ), \g.» "l
=~ 0.4 :‘
e.g., ford<d, this boils down to substituting the anchoring L ezact
constantC, by —C,. The boundary conditions for the twist 0.2t soo- small d
fluctuations are also identical to the boundary conditions in B . infinite d
the case of the planarly aligned film, if proper substitutions ool . . .
are made. These substitutions for the twist mode are 0.0 04 08 1.2 1.6 20
d (um)
C,—C,cos6,,
FIG. 5. The relaxation time of the tilt mode with smallegtas
C,— Czsin2 05, a function of the thickness according to the exact numerical solution
of (299 (solid line), the approximate analytical formul@0g for

e.g., ford<d, this is equivalent to settinG, equal to zero. smalld (dashed ling and the approximation for infinitely large
Now it follows that the secular equation for the tilt fluctua- (dot-dashed ling

tion changes to
portional toy/|d./d—1| asd approaches.=0.4 um, lead-
Lao/cog26;)—Ly/coq26,) ing to the cusp at the critical thickness in Fig. 5. This cusp is
d cot(q.d) a direct consequence of the nonanalytical character of
61(d) and 6,(d) at d=d.;. The nonanalytical behavior of
the twist mode is less pronounced, as can be seen from the

1 LyL,
=0 " dZog20,c0520,) 2 @93 smallkink in the curve of Fig. 6 ad=d..

whereas the secular equation for the twist fluctuation V. DISCUSSION

changes to
All fluctuation modes give a contribution to the scattering
amplitude proportional to

L,/cog6;,+L,/sire
L2 cot(q,d)

d .
L L sin (9~ (kiz—kiz)d)/2]
- 412 [0, (ke — ki) d]/2
q,d T $2cod 6,Sir’ 6, azd. (290 Lo
For small thicknesses, of moden is approximately equal to

In general, Eqs(298 and(29b) must be solved numerically. nz. Clearly, the mode with minimah— (ki,— ki,)d| gives
the dominant contribution to the scattering proces. However,

Analytical solutions are possible for thicknessgésmuch
smaller tharl; andL,. The tilt and twist mode with small-  the contributions from other modes with a sufficiently small
value for the differencénm— (k;,—ki,)d| can be expected to

estq, have relaxation times given by
Ci—C, CiCyt(Ci—C,)%I3 be important as well. This implies that for very thin films the
17 2 1“2 17 2
Yl T =K(0,2+qy?) + - ,
d K ‘0 .
(309 l ;
, , Ci Ci3 o9
Y Twist=K(Ox"+ 0y + 5 = —— (30b) ;
= 0.6f N
In the limit of vanishing film thicknesses the relaxation times ~
go linearly to zero with the film thickness. L N
Equations with the thickness dependence(8®g and [y — ezact
(30b) appear to describe the experimentg bf] reasonably. 0.21 ---- small d
Figures 5 and 6 show the thickness dependence of the relax- /o T infinite d
ation time of the tilt and twist mode with smallesj, re- 00 T 05T s z0
spectively, according to exact numerical solutions(283 ’ ’ 'd (Mn) ’ ’

and (29b), to the analytical approximatior(80a and (30b),
and to the approximation for infinitely thick layers. The pa-  Fig. 6. The relaxation time of the twist mode with smallgst

rameters usezd in the Calculatiogs_ #re 3 pN,y=15mPas, as a function of the thickness according to the exact numerical
C,=15uJ/im?, andC,=5 uJ/m?, i.e., the same elastic con- solution of (29b) (solid line), the approximate analytical formula
stant and anchoring constants as used in the calculation f@80b) for smalld (dashed ling and the approximation for infinitely

Fig. 4. It appears thaj, for the tilt mode goes to zero pro- larged (dot-dashed ling
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decay of the autocorrelation function may be nonexponenerientational fluctuations that contribute to the scattering
tial. The moden=0 is the dominating scattering mode if the cross section have wave vectarsvith a z component that
thickness is smaller than approximatehy/(ki,—k;,). As  satisfies

(ki,—k;,) is always smaler than #/\, with A the wave-

length of the light in the nematic, it follows that the=0 |a,— (k,—kip)|<=/d

mode is responsible for most scattering events in films thin-

ner than approximately/4, whatever the scattering geom- with d the thickness of the film. Second, only orientational
etry is PP ' 99 fluctuations with wave vectors that belong to a discrete set of

In case the elastic anisotropghe difference between wave vectors are allowed by the boundary conditions. This
; X means that the orientational fluctuations are overdamped
K1, Ky, andK3) is taken into account the problem of deter-

mining the fluctuation eigenmodes of the hybrid film be- standing waves rather than overdamped traveling waves. As

comes a formidable mathematical problem. This is due to thgfiﬁgsﬁgx]zrgiiel’ic;n%rg'?ggll?cirl]n?me depends on the thickness

fact that the fluctuation eigenmodes can then no longer be
expressed in terms of a single wave veatprinstead, the

eigenmodes correspond to an infinite Fourier sum of terms APPENDIX

with different wave vectors. S The hydrodynamic equation for the director field is
Recently, fluctuations of confined nematic liquid crystals _

were treated under the assumption of strong anchddifg yn=h—A\n, (A1)

The present theory improves some of the resultgl6f by ) ) ) _ o
incorporating weak anchoring, i.e., by allowing the directorWith v the effective viscosity coefficieni the so-called mo-
field at the boundary to deviate from the preferred directionlecular field, and\ a parameter that must be solved from the
This is more appropriate in the limit of small film thick- Orthonormality condition for the director field

nessesd. Whend is much smaller than the extrapolation nn=1 (A2)
length K/C the anchoring properties dominate the fluctua- ’
tions, instead of the elastic properties. Therefore, the expresthe components of the molecular field are defined by
sion for the inverse of the relaxation time contains a term

proportional toC/d, instead of the term proportional to d
K/d? as appears in the limit of strong anchoring. Conse- h
guently, in the limitd going to zero,r goes to zero linear in

d, instead of quadratic id. It should be noted that devia- with f., the elastic free energy density. In the one-constant
tions from this behavior can be expected in scattering geomapproach, this quantity can be expressed as

etries with K,—k;,) #0 for thicknesses larger than approxi-
mately 7/ (K, — Kiy).

The present theory can also be applied to light scattering
by nematics confined in porous media. If these media are
approximated by a set of randomly oriented cylindricalwhere K is the effective elastic constant. This leads to a
pores, an effective relaxation time for sufficiently small av- molecular field
erage pore sizeR can be defined as

afel } afel

a(anglarg) | on,’ (A3)

a

B B:x'y’z (Qr'B

fe%K 2 (Vny? (A4)

a=Xxy,z

h=KV?n. (A5)

2C Using the orthonormality conditioi33) and the hydrody-
VI T efi= K(qﬁ)+ R (31)  namic equatiorfAl) for the director field an explicit expres-
sion for the constank can be derived:

, , , A=An-n=[h—yn]-n=h-n=Kn-V?n. (AB)
with C the anchoring constant argj the magnitude of the

component of the scattering vector along the pore directionNow the hydrodynamic equation can be written as

The brackets denote averaging over the randomly oriented i ) 5

pores. Deviations from th€/R dependence of; can oc- yn=KVn—K(n-Vn)n. (A7)

cur for values ofR larger than approximately/4. A K/R?

dependence of . [7,11,19 seems appropriate for values of

R much larger that/C. A crossover between the two types

of behavior may be expected for the intermediate regime. d?neq d?neq

Due to the distribution over the various pore sizes and pore 7z ( Neg ?) Neg=0. (A8)

orientations(and because of the smallness of the pore sizes

many fluctuation modes with different relaxation times con-tpq hydrodynamic equation for small fluctuatios is ob-

tribute to the scattering process. This means that the autocofzined by substituting

relation function may be expected to deviate substantially

from exponential decals,11]. N=nNegt N, (A9)
Concluding, the light scattering by thin nematic liquid

crystal films differs in two important respects from the light in Eqg. (A7) and linearizing this equation ian. It is found

scattering by nematic layers of infinite thickness. First, thethat

The equilibrium director field only depends on the coordi-
natez. Then it follows that
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) 5 o|2neq 2N Now the boundary conditions can be written as
75n= KV<4én—K neq- ? on—K neq- ?) neq an
&n _Cl(Hl'n)[Hl_(Hl'n)n]lz:O_KE =0,
— . &a z=0
K(ﬁn 02 )neq. (A10) (Al4a)
The boundary conditions can be derived using an expression an
for the surface free energy densiy. The Rapini-Papoular = Co(llp- [ = (M- mn]|,—g +K =} =0.
approximation leads to the following simplified form: z=d (A14b)

1 1 " _— . .
W= — §C1(H1-n)z|z:o— ECZ(HZ'n)le:d- (A11) 'rl'he boundary conditions for the equilibrium director field

ead
Here C, and C, are the anchoring constants ahfj and dned
I1, are unit vectors along the easy axes of the substrates at — C1(IT1- Neg) [T — (T3 Neg) Negl| 20— K o O
z=0 andz=d, respectively. In order to avoid unnecessary Z:O(A15a)
mathematical complications no surface elasticity is taken
into account. The boundary conditions at the substrates are dn
— . —_ . eq =
IW afel N CZ(HZ neo)[HZ (HZ neq)neq]|z=d+K dz Yy '
=N EYETYE Y siN
an | _, d(anlaz)| _, =0 (A15b)
an whereas the linearized boundary conditions for the small
=—Cy(II;-mII;— KE +NgiN , (Al128 fluctuations can be expressed as
z=0 z=0
—Cy(IIy- 5”)[“1_2(H1'neq)neq]|z:0
W g N
“on | T aeniaz)| N ) aén
z=d z=d +C1(H1'neq) 5n|2:0_Ka_ =0, (A16a)
an Z z=0
2l -4 z=d —Cy(I,- 5”)[“2_2(H2'neq)neq]|z:d
Here\g; and\ s, are parameters that must be solved from the a6n
orthonormality condition for the director field. Analogous to + Cy(Il,- neq)25n|zzd+Ka— =0. (Al6b)
the hydrodynamic equation for the bulk it follows that Zls-d

It is often advanageous to use the parametrization of the

on
As1=A\ giN- n|z—o:{C1(H1' n)l+KE

-n director field in terms of the so-called tilt and twist angles
z=0 0 and ¢:
— 2
CaHz: -0, (A139 n=(coshcosp,cosing,sind), (A17)
and similarly _
e.g., the two independent components of the fluctuasion
Nes=Co(II,-n)?|,_q. (A13b)  can be related to the tilt and twist fluctuatiofg and 6¢.
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